手机版
您的当前位置: 考试资料网 > 生活服务 > 实用查询 > 数学中的美

数学中的美

来源:实用查询 时间:2020-04-17 点击: 推荐访问:数学 学中

【www.041188888.com--实用查询】

|

第1篇:“数学中的美分析”

数学中的美分析

刘志友

(陕西咸阳师范大学数学与信息科学学院,712000)

摘要

数学是研究现实世界中空间形式与数量之间关系的科学,是描述自然规律和社会规律的科学语言和有效工具。数学在促进人类生产和生活以及改造自然方面发挥着重要作用。数学美是一种简单、和谐、严谨而奇特的形式,包含在它独特的抽象概念、公式符号、命题模型、结构系统、推理论证、思维方法等之中。这是数学创造的自由形式。它揭示了规律性,是一种科学的、真实的美。本文将讨论数学中的简洁美、对称美、和谐美、象征美、奇异美和形象美。这些美女不仅赏心悦目,能陶冶性情,能使人聪明,还能使人高贵。研究数学美可以让我们感受到美的神韵,提高我们学习数学的兴趣,培养良好的思维品质,提高我们的数学素养,让我们更加热爱数学,进而更加热爱科学。

关键词:简洁美;对称美;和谐之美;象征美;奇妙的美;形象美

I

类比分析数学中的美

刘志友

(西安阳师范大学数学与信息科学系

陕西712000)数学不仅是一门研究现实世界中空间形式与实体关系的科学,而且是一门科学语言,是描绘自然规律和规律的有效工具数学美是科学美的一种,它是其自身抽象概念、公式符号、命题模型、结构系统、推理论证、思维方式等的简单、和谐、精确和奇异的形式。它是数学创造中的自由形式,它揭示了规律。这是一门真正的美容科学。本文将阐述数学中的紧凑美、对称美、和谐美、象征美、奇异美、形象美。这些美丽不仅使我们快乐,独特和明智,增加我们的兴趣,而且使我们成为一个高尚的人。在对数学美的研究中,我们可以感受到美的精神,激发我们学习数学的兴趣,培养我们良好的思维品质,使我们更热爱数学,也更热爱科学。

关键词:紧凑美;对称美;和谐之美;象征美;奇异的美;图像美

II

条目

摘要..................................................................................................................一、摘要..................................................................................................................II

前言.................................................................................................................1

1年数学的简单性....................................................................................................2

1.1数学语言的简单性......................................................................................2

1.2数学方法的简单性......................................................................................4

|对称美国....................................................................................................5

2.1

2.2

2.3

3对称性在几何中的应用..........................................................................5积分中的对称性..........................................的应用..........................................方程中的对称性..........................................................................8数学......................................................................................................9

3.1

3年2月美丽的黄金分割........................................................................................9数学推理的和谐.......................................................................10

|数学符号1994...............................................................................................11

4.1

4.2

4年3月数学符号的便利性..................................................................................11数学符号的简单性.............................代表.............................................12个数学符号..................................................................................。12

|...............................................................................................12

5.1

5年2月数学方法的奇点..................................................................................12数学思维的奇异性..........................................................................13

6年数学图像...............................................................................................14

6.1

6.2数字和诗歌...............................................................................................14数学和诗歌...........................................................................................16

结论..............................................................................................................17

参考文献............................................................................................................18

谢慈..............................................................................................................192

咸阳师范大学2010年本科论文(设计)

前言

古希腊有句名言:“有数字,就有美。”1

美国数学家和数学史家克莱因说:“音乐可以刺激或抚慰感情,绘画可以使人赏心悦目,诗歌可以打动人心,哲学可以使人获得智慧,科学技术可以改善生活。然而,数学可以提供上述所有东西。”著名哲学家罗素曾指出:“如果正确看待数学,它不仅拥有真理,而且拥有至高无上的美。”

数学是研究现实世界中空间形式和数量之间关系的科学,是描述自然和社会规律的科学语言和有效工具。数学在促进人类生产生活和改造自然方面发挥着重要作用。

然而,长期以来,许多人只注重数学的实用原理,忽视数学的美学原理,用枯燥的方式讲数学。结果,许多人,尤其是中小学生,对数学失去了兴趣,甚至变得无聊。他们只想应付考试。为了进入一所好的中学或大学,他们必须通过大量的练习。结果,他们变得越来越无聊,越来越无聊,越来越不感兴趣,形成了一个恶性循环。调查原因。除了许多社会因素之外,还有一个基本的因素,就是学生感觉不到数学的和谐与美,在学习中自然得不到良好的学习效果。

数学美是一种简单、和谐、严谨而奇特的形式,包含在其独特的抽象概念、公式符号、命题模型、结构系统、推理和推理、思维方法等方面。它是数学创造的自由形式,揭示了规律性。这是一种科学上的真正美。

数学语言的概括性、简洁性和抽象性,数学知识的真实性,数学方法的多样性、灵活性和科学性,数学思维的新颖性、唯一性和独特性等。都是数学美的具体内容和表现。

数学中的定理、概念、公式、问题、理论、方法和美的思想,简直就是一座美丽的大花园。花儿是人类思维的花朵。其中有空心兰花、高山杜鹃、古林人参、冰山雪莲、山顶灵芝和抽象思维牡丹。

例如[2):爱因斯坦著名的质能公式E mc2(E-energy,m-mass,c-光速)被誉为“不朽的公式”。一旦从数学上抽象出来,它就把深刻而复杂的自然规律变成如此简单而简洁的数学公式。欧拉公式被称为“中美数学模型和数学中最杰出的公式之一”,它神奇地把看似不相关的五个数字“0,1,I,e”联系在一起。《数学的圆》是数学家的头脑和智慧创造的数学艺术美的杰作。{数学中的美}.

还有,举世闻名的埃及金字塔、维纳斯雕像、蒙娜丽莎的微笑肖像等等都是艺术家们用“黄金分割率”创作的传奇作品。

1

2:数学中的美-本科论文

论文标题作者姓名、职称指导教师

本科论文(学士学位申请)

谈论美国数学和数学中的应用数学

2年6月014

学生:学生编号。:论文回复日期:参考讲师:(签名)2014年5月24日2012220159(签名)

图书

摘要......................................................................................................................................................2摘要....................................................................................................................................2 1.介绍...........................................................................................................................................................1.1背景和基本概念....................................................................................................................2 1.2有相关结果...............................................................................................................................3 2.数学美简介..................................................................................................................2.1数学中的象征美............................................................................................................................3 2.2数学中的抽象美....................................................................................................................4 2.3统一美国..............................................................................................................数学中的对称性..............................................................................................................7 3.生活中的数学美..............................................................................................................................8参考文献...............................................................................................................................1 0谢谢.............................................................................................................................………11

谈数学中的美

摘要:“数学就是美”是由著名数学家陈省身先生不止一次提出的。数学美可以从

199个不同的角度来观察。数学中对美的表达也是不同的。数学美主要包括符号美、抽象美、统一美、协调美、对称美、形式美、奇异美、有限美、恒定美等每一种美都不是孤立的,它们是紧密结合和不可或缺的。象征美、抽象美、统一美、协调美和对称美是数学美的基本特征在这里,我将只从这五个基本特征来阐述数学中的美。

关键词:数学;数学的美;简单和美丽;协调美;对称美;统一之美;符号之美

谈数学美

摘要:“数学是美丽的”这种观点一直是家庭数学。陈省身先生

不止一次提出。数学美可以从不同的角度观察。形式上的数学之美不在于形式。数学美是美的象征、抽象美、统一美、和谐美、对称美等。每一种美不是孤立的,它们是结合在一起的,不可或缺的。数学符号中的抽象美、形式美、协调美、统一美、对称美是数学美的基本特征。这里我们只从五个基本特征来解释Mathe MATICS的美。

关键词:数学,数学美,简单美,和谐美,对称,

美的统一,符号美

1。

什么是美?自古以来,人类从未停止过对美和“什么是美”的学习他们都有不同的衡量标准和价值取向,看到什么就看到什么。什么是美?俗话说,“人人都爱美丽。”著名的大师李泽厚曾经说过:“完整、和谐、独特、真与善、规律性与目的性的统一是美的本质和根源。”

[1]

著名数学家陈省身先生不止一次提到“数学是美丽的”。

可以从不同角度观察数学美数学中对美的表达也是不同的。她的美丽在于她是探索宇宙法则现象的起点。美可以通过使用一些字母符号来表达丰富信息的简洁和清晰。美丽在于她永不停止探索、敢于大胆假设和严格展示的性格。当她展示看似不同的问题时,可以用同样的想法来回答美丽。数学家们在毕生追求证明定理的过程中,几乎在所有学科中都广泛使用美。

1.1背景和基本概念

现在美学家认为美应该包括以下几项:

从以上观点来看,世界并不缺少美,而是一双眼睛,一双发现美的眼睛你注意到它的美了吗?这种美是独特的,可以是暂时的,也可以是永恒的,这就是数学的美

数学,如果正确看待的话,不仅有真理,还有至高无上的美——罗素

数学的魅力在于它的美,我认为它可以分为两类:一是数学本身的美;另一个是他为生活创造的美。音乐可以刺激或抚慰感情,绘画可以使人愉悦,诗歌可以打动人心,哲学可以使人获得智慧,但数学可以提供所有这些,并给人幸福这是美国数学史学家m·克莱因对数学的描述。[1]

事实上,数学美主要是数学美本身。我们已经知道数学美的特征,所以让我简单描述一下这个谜金字塔1:

1×1 = 11×11 =

121

三:

阅读报告

学生姓名:

学院:专业:教师:11080341226+

牛亚杰号码:X03

信息商务学院

|田宝玉

| 11月11日李泽厚说:美也是自由的一种形式:整体性、和谐性、独特性、真与善、规律性与目的性的统一是美的本质和根源数学经常被误认为是一门无聊的学科,但是数学同时也有各种各样的美。这些美丽早已被我们抛弃和遗忘。本文从数学中的各种美来探讨数学中的美关键词

:黄金比例,和谐美,对称美,形式美

前言

在大多数学生眼里,数学永远是枯燥而难以捉摸的抽象概念学习

数学的唯一也是最好的方法就是在问题的海洋中翱翔。问题的海洋是一堆无数困难的符号我们已经看到了数学的重要性,我们也知道数学被广泛使用,但是我们也被所谓的考试制度所蒙蔽。事实上,在数学中有许多我们从未触及的领域,也有许多奇妙而有趣的现象。正如英国哲学家、数学家和逻辑学家罗素所说,“准确地说,数学不仅拥有真理,还拥有极端的美——一种平静而简单的美,就像雕塑一样,尽管没有什么能诱惑我们脆弱的天性,也没有什么华丽的外衣像绘画或音乐。”然而,它展示了只有伟大的艺术才能展示的极度纯净和严格的完美。“数学的美在我们的生活中无处不在。本文以数学美为内容,向我们展示了我们经常忽略的数学美!美妙的黄金比例

黄金比例是我们在小学四、五年级学到的。我们对黄金分割比率

的理解只是肤浅的。然而,这个奇妙的数字在自然界和人们的生活中随处可见:人的肚脐是人体总长度的黄金分割,人的膝盖是从肚脐到脚跟的黄金分割。大多数门窗的长宽比也是0.618。在一些茎上,两个相邻叶柄之间的角度是137° 28,这正好是将圆周分成1: 0.618的两个半径之间的角度。据研究,这个角度对植物通风和照明效果最好......

的黄金分割法则是什么?黄金分割,也叫黄金律,是指一个事物的各个部分之间一定的

数学上的

比例关系,即整体分为两部分,大部分与小部分的比例等于整体与大部分的比例,比例为1: 0.618或1.618: 1,

,即长部分是整体的0.618。0.618被认为是最具美学意义的比例数字上述比例是最能引起人们美感的比例,所以被称为黄金分割。黄金分割比在各个领域都有很多应用,其美感是众所周知的。

例如,黄金分割和建筑艺术的关系——黄金分割被认为是建筑和艺术中最理想的比例建筑师

0.618

法国的埃菲尔铁塔在最近一个世纪的数据与0.618有关黄金分割与大多数门窗的宽度和长度之比也是0.618

。黄金分割与艺术创作有关——最著名的是达芬奇的《蒙娜丽莎》“黄金分割”是一个数学比例关系黄金分割具有严格的比例性、艺术性和和谐性,蕴含着丰富的美学价值。通常,应用时使用0.618

,就像3.14一样在优雅的艺术大厅里,自然会留下一丝金色的数字。人们还发现,一些著名的绘画、雕塑和摄影作品的主题大多在画面的0.618

0.618,这可以使钢琴的声音更柔和、更甜美。黄金矩形的长宽比是黄金比例,换句话说,矩形的长边是短边的1.618倍。黄金分割率和黄金矩形可以给画面带来美丽和快乐。在许多

的黄金矩形中,{数学中的美}.

本文来源:https://www.041188888.com/index.php?m=content&c=index&a=show&catid=6&id=287147

上一篇:新闻专业参考
下一篇:写安康

扩展阅读文章

考试资料网 https://www.041188888.com

Copyright © 2002-2018 . 考试资料网 版权所有 京ICP备11356960号

Top